
New MAA XML Schema

An overview

J A N U A R Y 2 0 1 9

Contents

1. Current MAA schema – Problems and solutions adopted

2. New schema structure overview

3. PDF generation

Contents

1. Current MAA schema – Problems and solutions adopted

2. New schema structure overview

3. PDF generation

1.

What we saw in the DES XML specification What we have done

The DES XML node order does not reflect the order of fields in the form.

Example(s):
The node maa:scientific-advice (Section 3) appears in the document before the
node maa:declaration (First section in the PDF)

Reorganized the order of the nodes in the XML
document so that it matches the order visually
perceived in the PDF document

Some nodes in XML DES have names which corresponds to the UI control that
allows its edition and does not reflect their business meaning.

Example(s):
Nodes maa:yes, rdm:selected or maa:Manu-device-checkbox

Changed the name of these nodes, so that it relates to
the business meaning of the data it contains.

There are cases of high-level nodes that have the most part of its children nodes
empty and cannot be filled from the PDF, resulting in an unnecessary overhead
in size and complexity of the XML document.

Example(s):
The node maa:contact-pharmaco-vigilance has its children nodes rdm:admin-
office and rdm:manu-facility with all their descendants empty with no
possibility of being filled via the PDF form.

Removed unnecessary nodes (i.e.: all the nodes that
cannot be filled using the PDF form)

Current MAA schema problems and solutions adopted

What we saw in the DES XML specification What we did

Attributes of some XML nodes are equal to “” and cannot be modified from the
PDF.

Example(s):
Attribute is_significant-benefit of node maa:orphan-designation

Removed all attributes in the XML.
Plain (scalar) data are just contained as node values (i.e.:
“<node>data</node>”)

There are some attributes, not related to the business but with the adobe
technology , defined in the XFA schema and with namespace
http://www.xfa.org/schema/xfa-data/1.0/. XFA is a proprietary family of XML
specifications (see Wikipedia) used also by Adobe.

Example(s):
Attribute xfa:APIVersion

Removed all attributes in the XML, hence also
proprietary ones

Node naming conventions are not uniform. Sibling nodes are not named following
the same rules and notation.

Example(s):
• Node maa:centralised-procedure corresponds to section 1.1.1 of the PDF
• Node maa:section1-5-1 (sibling of the above) corresponds to section 1.5.1

Named all nodes consistently. Children of form node
have names that reflect corresponding section number in
the PDF document. All nodes of lower level have been
given names that reflect their business meaning:
• “section-1” for Section 1 node
• “centralisedProcedure”, for Section 1.1 node

Current MAA schema problems and solutions adopted (Cont.)

http://www.xfa.org/schema/xfa-data/1.0/
http://www.xfa.org/schema/xfa-data/1.0/
http://www.xfa.org/schema/xfa-data/1.0/
https://en.wikipedia.org/wiki/XFA

What we saw in the DES XML specification What we did

Nodes aren’t named consistently. Different use of lower/uppercase characters,
uderscores (“_”) and dashes (“-“) in node names.

Example(s):
Nodes maa:subject_to_prescription, maa:Device-identification, rdm:loc-
modifiedDate, maa:not-subject-medical-prescription

Adopted Camel case naming convention (Wikipedia)
uniformely, while preserving DES names, where possible.

Dash (“-“) character is used only in section names and
annex- names, in order to separate contained numbers.

Examples:
subjectToPrescription, deviceIdentificarion,
notSubjectMedicalPrescription, annex-2

Repeatable nodes of different type share the same parent.

Example(s):
Nodes of type maa:Manufacture-contact-details (repeatable – Section 2.2.4.2) are
siblings of nodes maa:Device-identification (repeatable too – Section 2.2.4.1)

Each collection of repeatable nodes is included in a node
having same name, but “pluralized” and with
“Collection” suffix

Example:
manufacturerContactDetailsCollection node contains a
collection of manufacturerContactDetail nodes

Current MAA schema problems and solutions adopted (Cont.)

https://en.wikipedia.org/wiki/Camel_case

What we saw in the DES XML specification What we did

Some nodes are used improperly.

Example(s):
If “Vaccine antigen master file” option is selected in the PDF, a rdm:vamf node is
generated with all its subnodes empty except one (rdm:is-vamf-issued with a
value of “1”). Data of all VAMF entries are located in following rdm:vamf (first
entry in second node, second entry in third and so on), so that reading of first
node has to be skipped in order to retrieve data.

Created a node called isVamfIssued wich indicates
whether the option is selected or not. The node has a
sibling called vamfs that contains the collection of vamf
nodes, one corresponding to each real VAMF entry.

Current MAA schema problems and solutions adopted (Cont.)

Contents

1. Current MAA schema – Problems and solutions adopted

2. New schema structure overview

3. PDF generation

2.

Remarks:
• Document has root node “euApplicationForm” with two children:

• documentMetadata: domain, version, creation date
• form: the eAF data

• Only two namespaces:
• maa:http://www.eaf.com/maa/ (instances data namespace)
• cd:http://www.eaf.com/dictionary/ (dictionary namespace)

• No external namespaces (xfa=http://www.xfa.org/schema/xfa-data/1.0/)

New schema structure overview

Remarks:
• Enforced consistent naming conventions (use of Camel Case notation)
• Boolean nodes (yes/no) have names that suggest their nature (begin with “has” “is” “was”,…)
• Used XSD schema to define/enforce:

• Data types
• Be mandatory/optional
• Cardinality

New schema structure overview (Cont.)

Remarks:
• Collections of repeteable nodes always contained in an exclusive parent
• Parent name of nodes xxx is named xxxsCollection (plural form + “Collection” suffix)
• exclusive = no other nodes contained in it

New schema structure overview (Cont.)

Remarks:
• First level children of “form” have names that reflect their position in current PDF structure

New schema structure overview (Cont.)

Remarks:
• Children of 2nd level (or higher) have names that reflect their business meaning (e.g.: centralizedProcedure)
• Use of xs:choice element to limit document size and avoid inconsistencies (if it is a centralizedProcedure, no

nationalProcedure contents exist)
• Use of types and deferred node definitions (in the dictionary)

New schema structure overview (Cont.)

Remarks:
• Use of xs:assert elements to enforce complex business rules compliance (Note: XSD schema version 1.1 used)
• Assertions defined after element fields enumeration, so the element definition is always self-contained

New schema structure overview (Cont.)

Remarks:
• Three XSD schemas:

• maa_human2.xsd (eAF of human domain)
• maa_veterinary2.xsd (eAF of veterinary domain)
• eaf_dictionary.xsd (common dictionary with type definitions for both domains)

• Version should be 2.0 (no backward compatibility with 1.2x.* versions)

New schema structure overview (Cont.)

Contents

1. Current MAA schema – Problems and solutions adopted

2. New schema structure overview

3. PDF generation 3.

PDF generator Web application

XSLT | C# App
| (??) JSON

XML
(New)

HTML
XSLT

PDF C# App

With
embedded file

2 3 4 5 6 7 8

PDF generation in CESP project

Data flow:
1. Data is inputted by users in a web form
2. Internally, a JSON representation of the data is created
3. Using a transformation mechanism (XSLT or coded-solution) a XML document is generated
4. This XML conforms to new XSD specification (thus, XSD schemas can be used to perform input validation)
5. An XSLT transformation is used for generating an HTML representation of the eAF
6. This XML has a visual appearance similar to current PDF Form (in its 1.23.1.1 version)
7. A coded solution will implement the transformation to PDF of the HTML document. Third-party libraries will be used

(IronPDF + iTextSharp)
8. The generated PDF will have the eAF XML document attached (natively embedded). Additionally, the JSON document

can be embedded as well

1

